Random

Random

Iterator that yields random values

Constructor

new Random(seed, next) → {Random}

Source:
Parameters:
Name Type Description
seed Number
next Method()
Returns:
Type
Random

Methods

(static) next(bitsopt) → {Number}

Source:

Generates the next pseudorandom number. This function is passed into constructor and other functions are using it to generate specific random values, so it essentially makes a pseudo-random generation engine.

Parameters:
Name Type Attributes Default Description
bits Number <optional>
32

That many low-order bits of the returned value will be (approximately) independently chosen bit values, each of which is (approximately) equally likely to be 0 or 1.

Returns:
Type
Number

(static) get_seed() → {Number}

Source:

Returns current seed

Returns:
Type
Number

(static) set_seed(seed)

Source:

Replaces current seed

Parameters:
Name Type Description
seed Number

(static) next_bool() → {Bool}

Source:

Return true or false

Returns:

The next pseudorandom, uniformly distributed boolean value from this random number generator's sequence.

Type
Bool

(static) next_double(nopt) → {Number}

Source:

Return floating point value in range [ 0, n )

Parameters:
Name Type Attributes Default Description
n Number <optional>
1
Returns:

The next pseudorandom, uniformly distributed double-precission floating point value between 0.0 ( inclusive ) and n ( exclusive ) from this random number generator's sequence.

Type
Number

(static) next_float(nopt) → {Number}

Source:

Return floating point value in range [ 0, n )

Parameters:
Name Type Attributes Default Description
n Number <optional>
1
Returns:

The next pseudorandom, uniformly distributed float value between 0.0 ( inclusive ) and n ( exclusive ) from this random number generator's sequence.

Type
Number

(static) next_int(nopt) → {Number}

Source:

Return integer value in range [ 0, n )

Parameters:
Name Type Attributes Default Description
n Number <optional>
4294967296
Returns:

The next pseudorandom, uniformly distributed int value between 0 (inclusive) and n (exclusive) from this random number generator's sequence.

Type
Number

(static) next_int64() → {Number}

Source:

Return integer value in range

Returns:

The next pseudorandom, uniformly distributed int64 value from this random number generator's sequence.

Type
Number

(static) range(startopt, stop, stepopt) → {Number}

Source:
Parameters:
Name Type Attributes Default Description
start Number <optional>
0
stop Number
step Number <optional>
1
Returns:
Type
Number

(static) choice(iterable) → {Any}

Source:

Fully consume iterable and return random element from it.

Parameters:
Name Type Description
iterable Iterable
Returns:

random item from iterable

Type
Any

(static) choices(iterable, kopt) → {Any}

Source:

Fully consume iterable and return k random elements with replacement.

Parameters:
Name Type Attributes Default Description
iterable Iterable
k Number <optional>
1
Returns:

random item from iterable

Type
Any

(static) choices_weighted(iterable, weights, kopt) → {Array}

Source:

Fully consume iterable and return k random elements with replacement.

Parameters:
Name Type Attributes Default Description
iterable Iterable
weights Iterable
k Number <optional>
1
Returns:

random items from iterable

Type
Array

(static) choices_weighted_cumulative(iterable, weights, kopt) → {Array}

Source:

Fully consume iterable and return k random elements with replacement.

Parameters:
Name Type Attributes Default Description
iterable Iterable
weights Iterable

cumulative weights

k Number <optional>
1
Returns:

random items from iterable

Type
Array

(static) sample(iterable, kopt) → {Array}

Source:

Returns k non-repeating items from input iterable.

Parameters:
Name Type Attributes Default Description
iterable Iterable
k Number <optional>
1
Returns:
Type
Array

(static) sample_weighted(iterable, weights, kopt) → {Array}

Source:

Returns k non-repeating items from input iterable.

Parameters:
Name Type Attributes Default Description
iterable Iterable
weights Iterable
k Number <optional>
1
Returns:
Type
Array

(static) shuffle(iterable) → {Array}

Source:

Returns shuffled array with items from input iterable. If iterable is array, shuffles the array itself.

Parameters:
Name Type Description
iterable Iterable
Returns:
Type
Array

(static) exp_variate(labmda) → {Number}

Source:

Exponential distribution.

Parameters:
Name Type Description
labmda Number

lambda is 1.0 divided by the desired mean. It should be nonzero.

Returns:
Type
Number

(static) gaussian(muopt, sigmaopt) → {Number}

Source:

Gaussian distribution.

Parameters:
Name Type Attributes Default Description
mu Number <optional>
0

mean

sigma Number <optional>
1

standard deviation

Returns:
Type
Number

(static) log_norm_variate(muopt, sigmaopt) → {Number}

Source:

If you take the natural logarithm of this distribution, you'll get a normal distribution with mean mu and standard deviation sigma.

Parameters:
Name Type Attributes Default Description
mu Number <optional>
0

mean

sigma Number <optional>
1

standard deviation. Sigma must be greater than zero.

Returns:
Type
Number

(static) normal_variate(muopt, sigmaopt) → {Number}

Source:

Normal distribution.

Parameters:
Name Type Attributes Default Description
mu Number <optional>
0

mean

sigma Number <optional>
1

standard deviation

Returns:
Type
Number

(static) pareto_variate(alpha) → {Number}

Source:

Pareto distribution.

Parameters:
Name Type Description
alpha Number

Shape parameter.

Returns:
Type
Number

(static) triangular(aopt, bopt, modeopt) → {Number}

Source:

Return a random floating point number N such that a <= N <= b and with the specified mode between those bounds.

Parameters:
Name Type Attributes Default Description
a Number <optional>
0
b Number <optional>
1
mode Number <optional>
(a+b)/2
Returns:
Type
Number

(static) uniform(a, b) → {Number}

Source:

Return floating point value in range [ a, b ). Value b may or may not be included in this range depending on floating-point rounding.

Parameters:
Name Type Description
a Number
b Number
Returns:
Type
Number

(static) von_mises_variate(mu, kappa) → {Number}

Source:

Circular distribution

Parameters:
Name Type Description
mu Number

Mean angle, expressed in radians between 0 and 2*pi

kappa Number

Concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.

Returns:
Type
Number

(static) weibull_variate(_alpha, _beta) → {Number}

Source:

Weibull distribution.

Parameters:
Name Type Description
_alpha Number

Scale parameter

_beta Number

Shape parameter

Returns:
Type
Number